Add & Subtract Fractions


Let's now learn how to add and subtract fractions.






Fractions with the same denominator


Let's first consider fractions who have the same denominator.

When fractions have the same denominator, you only have to add (or subtract) the numerators and maintain the denominator.






Example 1


Solve \(\frac{2}{9} + \frac{4}{9}\)


Solution

\(\frac{2}{9} + \frac{4}{9}\)

\(\Rightarrow \frac{2 \ + \ 4}{9}\)

\(\Rightarrow \frac{6}{9}\)

\(\Rightarrow \frac{2 \times 3}{3 \times 3}\)

\(\Rightarrow \frac{2}{3}\)











Example 2


Simplify the expression: \(\frac{2}{3} + \frac{5}{3}\)


Solution

\(\frac{2}{3} + \frac{5}{3}\)

\(\Rightarrow \frac{2 \ + \ 5}{3}\)

\(\Rightarrow \frac{7}{3}\)

\(\Rightarrow 2\frac{1}{3}\)











Example 3


Simplify: \(\frac{1}{7} + \frac{2}{7} + \frac{4}{7}\)

Solution


Solution

\(\frac{1}{7} + \frac{2}{7} + \frac{4}{7}\)

\(\Rightarrow \frac{1 \ + \ 2 \ + \ 4}{7}\)

\(\Rightarrow \frac{7}{7}\)

\(\Rightarrow 1\)











Example 4


Simplify: \(\frac{1}{5} - \frac{2}{5} + \frac{4}{5}\)

Solution


Solution

\(\frac{1}{5} - \frac{2}{5} + \frac{4}{5}\)

\(\Rightarrow \frac{1 \ - \ 2 \ + \ 4}{5}\)

\(\Rightarrow \frac{3}{5}\)











Example 5


Simplify: \(1 - \frac{4}{9}\)

Solution


Solution

\(1 - \frac{4}{9}\)

\(\Rightarrow \frac{9}{9} - \frac{4}{9}\)

\(\Rightarrow \frac{9 \ - \ 4}{9}\)

\(\Rightarrow \frac{5}{9}\)











Remember:

When adding and/or subtracting fractions with the same denominator, maintain the denominator, then add and/or subtract the numerators.






Fractions with different denominators


If the fractions have different denominators, you need to find the Least Common Multiple (LCM) of the various denominators before you apply the operations on the fractions.

Consider the examples below:






Example 6


Simplify \(\frac{4}{5} - \frac{1}{3} + \frac{2}{9}\)

Solution


Solution

\(\frac{4}{5} - \frac{1}{3} + \frac{2}{9}\)

The L.C.M of \(5, 3\) and \(9\) is \(45\)

\(\Rightarrow \frac{9(4) \ - \ 15(1) \ + \ 5(2)}{45}\)

\(\Rightarrow \frac{36 \ - \ 15 \ + \ 10}{45}\)

\(\Rightarrow \frac{31}{45}\)











Example 7


Simplify \(\frac{1}{3} - \frac{1}{2} + \frac{2}{5}\)

Solution


Solution

\(\frac{1}{3} - \frac{1}{2} + \frac{2}{5}\)

The L.C.M of \(3, 2\) and \(5\) is \(30\)

\(\Rightarrow \frac{10(1) \ - \ 15(1) \ + 6(2)}{30}\)

\(\Rightarrow \frac{10 \ - \ 15 \ + 12}{30}\)

\(\Rightarrow \frac{7}{30}\)











Example 8


Simplify \(\frac{1}{2} - \frac{2}{3} + \frac{3}{4}\)

Solution


Solution

\(\frac{1}{2} - \frac{2}{3} + \frac{3}{4}\)

The LCM of \(2, 3\) and \(4\) is \(12\)

\(\Rightarrow \frac{6(1) \ - \ 4(2) \ + \ 3(3)}{12}\)

\(\Rightarrow \frac{6 \ - \ 8 \ + \ 9}{12}\)

\(\Rightarrow \frac{7}{12}\)











Example 9


Simplify \(\frac{1}{3} + \frac{1}{9} + \frac{1}{27}\)

Solution


Solution

\(\frac{1}{3} + \frac{1}{9} + \frac{1}{27}\)

The LCM of \(3, 9\) and \(27\) is \(27\)

\(\Rightarrow \frac{9(1) \ + \ 3(1) \ + \ 1(1)}{27}\)

\(\Rightarrow \frac{9 \ + \ 3 \ + \ 1}{27}\)

\(\Rightarrow \frac{13}{27}\)











Example 10


Simplify \(\frac{4}{7} - \frac{2}{3} + \frac{6}{21}\)

Solution


Solution

\(\frac{4}{7} - \frac{2}{3} + \frac{6}{21}\)

The LCM of \(7, 3\) and \(21\) is \(21\)

\(\Rightarrow \frac{3(4) \ - \ 7(2) \ + \ 1(6)}{21}\)

\(\Rightarrow \frac{12 \ - \ 14 \ + \ 6}{21}\)

\(\Rightarrow \frac{4}{21}\)











Remember:

When the fractions have different denominators, find the Least Common Multiple (L.C.M) of their denominators.






Mixed Fractions


When the fractions given are mixed fractions there are also two ways that you can simplify it.

\(*\) You can change the mixed fractions into improper fractions first before you add or subtract as done in example 1 and 2 below, or

\(*\) You can add and/or subtract the whole numbers first before you deal with the proper fractions.

Let's consider the examples below:






Example 11


Simplify \(2\frac{2}{3} \ + \ 1\frac{2}{5}\)

Solution


Solution

\(2\frac{2}{3} \ + \ 1\frac{2}{5}\)

Changing it to improper fractions:

\(\Rightarrow\) \(\frac{8}{3} \ + \ \frac{7}{5}\)

The LCM of \(3\) and \(5\) is \(15\)

\(\Rightarrow\) \(\frac{5(8) \ + \ 3(7)}{15}\)

\(\Rightarrow\) \(\frac{40 \ + \ 21}{15}\)

\(\Rightarrow\) \(\frac{61}{15}\)

\(\Rightarrow\) \(4\frac{1}{15}\)











Example 12


Simplify \(2\frac{4}{5} \ + \ 1\frac{2}{3}\)

Solution


Solution

\(2\frac{4}{5} \ + \ 1\frac{2}{3}\)

Changing it to improper fractions:

\(\Rightarrow\) \(\frac{14}{5} \ + \ \frac{5}{3}\)

The LCM of \(3\) and \(5\) is \(15\)

\(\Rightarrow\) \(\frac{3(14) \ + \ 5(5)}{15}\)

\(\Rightarrow\) \(\frac{42 \ + \ 25}{15}\)

\(\Rightarrow\) \(\frac{67}{15}\)

\(\Rightarrow\) \(4\frac{7}{15}\)











Alternatively, we can add or subtract the whole part of the fraction separately before adding or subtracting the fraction part. Consider the example below:


Example 13


Simplify \(2\frac{4}{5} \ + \ 1\frac{2}{3}\)

Solution


Solution

\(2\frac{4}{5} \ + \ 1\frac{2}{3}\)

\(\Rightarrow 2 + \ 1 \ + \frac{4}{5} \ + \ \frac{2}{3}\)

\(\Rightarrow 3 \ + \frac{3(4) + 5(2)}{15}\)

\(\Rightarrow 3 \ + \frac{12 + 10}{15}\)

\(\Rightarrow 3 \ + \frac{22}{15}\)

\(\Rightarrow 3 \ + 1\frac{7}{15}\)

\(\Rightarrow 3 \ + \ 1 + \ \frac{7}{15}\)

\(\Rightarrow 4 + \frac{7}{15}\)

\(\Rightarrow 4\frac{7}{15}\)











Example 14


Simplify \(2\frac{4}{15} - 1\frac{2}{3}\)

Solution


Solution

\(2\frac{4}{15} - 1\frac{2}{3}\)

\(\Rightarrow 2 - 1 + \frac{4}{15} - \frac{2}{3}\)

\(\Rightarrow 1 + \frac{1(4) - 5(2)}{15}\)

\(\Rightarrow 1 + \frac{4 - 10}{15}\)

\(\Rightarrow 1 + \frac{- 6}{15}\)

\(\Rightarrow \frac{15(1) - 1(6)}{15}\)

\(\Rightarrow \frac{15 - 6}{15}\)

\(\Rightarrow \frac{9}{15}\)

\(\Rightarrow \frac{3}{5}\)











Example 15


Simplify \(1\frac{1}{2} + 2\frac{1}{4} - 3\frac{5}{8}\)

Solution


Solution

\(1\frac{1}{2} + 2\frac{1}{4} - 3\frac{5}{8}\)

\(\Rightarrow 1 + 2 - 3 + \frac{1}{2} + \frac{1}{4} - \frac{5}{8}\)

\( \Rightarrow 3 - 3 + \frac{4(1) + 2(1) - 1(5)}{8} \)

\( \Rightarrow \frac{4 + 2 - 5}{8} \)

\( \Rightarrow \frac{1}{8} \)











Exercise

Simplify the fractions below:

  1. \(3\frac{3}{8} - 1\frac{1}{12}\)

  2. \(3\frac{3}{8} - 1\frac{1}{2}\)

  3. \(2\frac{2}{3} - \frac{5}{6}\)

  4. \((\frac{2}{3} - \frac{1}{2}) \div \frac{1}{6}\)

  5. \(\frac{1}{2} - \frac{2}{3} + \frac{3}{4}\)


Solution

a. \(2\frac{7}{24}\)

b. \(1\frac{7}{8}\)

c. \(3\frac{1}{2}\)

d. 1

e. \(\frac{7}{12}\)











Quick Test


Test yourself on what you have learnt so far. Click on the link below when your are ready.


Kindly contact the administrator on 0208711375 for the link to the test.






To advertise on our website kindly call on 0208711375 or 0249969740.